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Prequency-Dependent tp.Representability

Ini Density Function-l Theory

Daniel Msrns and Walter Kohn

Department of Physics
Unmvewty, of California

Santa Barbara CA 93106

ABSTRACT: In density functional theory (DFT) of the ground state a density

distribution, a.~ (r), is called ti-representable (VR) if it is the ground state density

in some external potential. (ht is known that not all 'reasonable' no(r) are VRI) In

DFT of time-dependent linear response of a non-degeerate pround state a similar

qution arses: Is a respxoe density; n1 (rjw)a3 " t, VR; i.e., is it the response

to some perturbing potential vj(r,w)e' t? (E.K.U. Gross and W. Kohn, Phys.

Rev. Lett. 55, 2850 (1965).) In the present paper we show that (1), if the

frequency w < w,,a. (the lowest excitation frequecy), the answer in affirmative;

and (2), if w > w,,,,,t, the answer is not necessarily affirnmative, as demonstrated

by coneeaml. (We exibit "reasonable functions nj(r,w)e""~ which, at

isolated frequecies, are not VR.) Implications for time-dependent DFT of linear

repneaedscussed. Accesion For&
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L INTRODUCTION

The question under wht conditions a static density distribution, n. (r), is u-representable

(VR) I ha atftated interest in recent years.2,, 4 The issue of Drepr mtability &1so arises

for tim.-dep~ndent densities, n(r, t). In particular, in connection with tim-depsndent lin-

ear response5 one encounters the following situation: Let to be the non-degenerate ground

state of a many electron system with density no (r), in a static =w al potential vo(r). A

small perturbing potential, vi(r, w)e - i t, is known to lead to a unique first order density

response, n1(r, )w wt , where n1 and u1 are related by the respon function x:

ni(r,w) = fx(r r'; )uI(r', ) .(

The converse question is, can a given function, n1 (r,w), be generated by some function

VI (r,W)? This is the u-representability problem of linear density response theory addressed

in this paper. It my be posed for interuting as well as rn-interacting particles.
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IL NON-INTERACTING FERMIONS

For non-interacting fermions, first order time-dpendent perturbation theory gives the

following re.ult for the response function:

r w - - (di --j) + (2)

where i are the single particle eigmofuctions of the unperturbed hamiltonian, ei the

eigmvlus, fi the occupation numbers (1 or 0) for the ground state, and 6 is a positive

infinitesimal

Except at the resonances, w = e - ei, Xa is hermitian and real and has a complete set

of orthonormal eiufunctions, (r,w), and real eigemndues, A, (w):

J xa(r,r';w)Ctdr',w)dr' = Ae()(r,w). (3)

If, for some frequency 0, one of the- eigenvalues, say Al, vanishes then the perturbing

potential

61 (r,0) M- ce(r, o) (4)

(s< < 1) has vanishing fit order density response

ft 1(rQ) = x(r, r;Q)oi(r', )dr'

= I&)ls (r,i) = 0. (5)

Also, clearly, the density change

n (r, ) - ;(r, ) (6)

is not induced by any linear combination of the complete set 1(rQ), that is, it is not VR

as a linear response density.

3
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Conversely, if all AI(w) 0 any density that can be expressed by a series of the complete

set of eigsenfunctions,

nl(r,w) =n1e )(r),(7)

is VR by the potential

urw)=E~ewn~)(~) (8)

Provided that the latter seris convergs

For all frequencies there exists one 'vanishing eipenvalue, corresponding to the trivial

Perturbation v1 = coast. (The corresponding usi = const. in trivialfly not VR.) We shall

show that for any system at frquencia smaller than the first resonance, no non-trivial van-

isingenvalues exist, and hence all densities which have a sufficiently rapidly convergent

expansion in the functions Q awe VR.

Resricingattention to non-resonant fr-equencies and choosing the eigenfauctions ~

real, Eq. (2) may be written as

where the indices a and 0 denote the occupied and unoccupied levels, respectively. The

response is

* n1 (rw) = V00*a(r)*,,(r), (10)

where

V,6.-A f0,6(~vjr~w~$*(rdr.(11)

The matrix elements V6 cannot all vanish, otherwise the determinantal wavefunction

Perturbed by v, would be identical to the unperturbed pround state. The integral

J n(r, w)vi (r, w)dr E 2 e 2  (12)
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in then negative-definite for frequencies below the first resonance. Therefore, ni can not

vanish identically, and Xj can have no vanishing eigenvalue in this range.

Let us note in passing that, for the special case of a single particle, the density change

Owing to the linear ineedneof the eigenfunctions, 0,, n1 can not vanish identically

at any frequecy.

We shall now present two examnplu. of system which, at isolated frequencies above the

first resonance, have non-VR response densities.

A. One-diniesIonal Ring, va= 0

Fopr a one-dimensional ring, 0 <5 z <5 2r, the non-interacting eigenfunctions are plane

waves:

* *(: =(2r)-1/2 eikt*. (14)

in the common gauge, ki inan integer. Thegroundastate with one particle in of no

interest (always VR). The pround state with two particles in two-fold degenerate and hence

inadm isl for our purposes. However, by choosing an appropriate constant gauge, the

allowed ke are ali shifted by j so that kj = (U + 1) /2, t =0, ±1,±2,..In this gauge, the

* two-particle pound state is non-degenerate. Eq.(2) takes the form

xa~xx';) =..L ~ 1~ (15)

where

k2 - k2. (16)
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The eigenfunctions of X, are plane waves, independent of w, so that

xi = (17)
to

where

Q(x) = (2') - 1/ 2 e ', (18)

and

_ _.2 +.+(J2-)

-- -2L0  1 19)
(Ie+4'Z>bN) (Ih.- 4 I>hV)

with N the number of particles. For example, for N 2, k =v 1 andk k = ±i so that

4

Z4__ 
_ __ _ 2(12

2(+ 1) 2(1 2 -L)* (20)t., " ,2_ + j12 ,2 -(j2 _) I I> z

Hence ech , III > 1, has two pol., with a zero lying between them at 0 = - 1)1/2.

B. One-dimensional Box, vo= 0

For a one-dimansional bat, 0 < z S r, the non-interacting eigenfunctions are standing

waves:

=(z) = (2/ir)1 / 2siniz, (21)

where = , 2, 3,..., and so

x (z, z';o) C=o o sinaz sin6z sinfz' sinaz', (22)

where

e6= ,2 - a2. (23)
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With the expansion
00

Vi(z,w) E af(wcosix, (24)
1=1

the maltri element., Eq. (11), take the form

#= -a - a .+), (25)

hence
1 a

nl(,w) = _ (---yC,, - 4,+.(w)) [cos(fi - ,)z - coo(# + a)z]. (26)

The eigenvalum and eigenfunctions of X, are given by

,(,)= (),(,). (27)

For two particle, this leads to the set of equations:

Aa {T _ 2 4)+2-122 (a 2 - a)

1 2

Aa$ = {o 152 (a3-a)+ ;2}-l2( -)+ 22 (,a3 - aT) }i

1 __24 32 8 )
S= ;, 2 -- 22 (4 - GO) + W2 - 322 a8)2(4-8 - a48

1 1 + +1)2__1_ ,. (1+2)2 -
S 1)2 - ( - 2)w2 -[(+2) 2

(t 2 - at) 2( 2 - 4 (ae-4 - ae)}; t > 5. (28)

w2 #((I1)2 112 -- W ((t -2) 2 -...412

Since the eve and odd Fourier components are not coupled the eigenfunctions have

definite parity. Numerical solutions of the equations corresponding to even eigenfunctions

have been carried out for frequencies 0 <_ w < 50. The method consists of taking a finite

series for Eq. (24), so that the solution of Eqs. (28) is reduced to diagonalization of a

finite matrix. Since for any fixed w the series of Eq. (22) is uniformly convergent in the

7



variables z and z, X, can be approximated with arbitrary accuracy by a sufficiently large

matrix, for any fixed frequency range.

A plot of the eigenvalues for a 30-dimensional matrix, Fig. 1, exhibits two eigenvalues

pasing through zero, above the resonances at 12 and 32. Fig. 2 is an expanded view of the

first zero in which the repulsion between the eigenvalum, indicating a mixing between the

eigenfunctions in regions of near-degeneracy, is more pronounced. Despite this mixing the

eigenfunction corresponding to the vanishing eigenvalue tends to a limit as the eigenvalue

approaches zero from above, as shown in Fig. 3 for the first zero. Fig. 4 is a plot of the

eigenfunction at a frequency for which the eigenvalue is very small and positive. It is given

by a rapidly converging Fourier series and, accordingly, is smooth in appearance.

- .
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IML INTERACTING FERMIONS

The reponse function for N interacting fermions is

00

x(rr'r;w) f w22-E
0
-°- E I/O(rr2,. ' rv) k (rr 2 ,. ' ' rN)dr2

" ' dry

.!•

× f a(' % '&, • -, z'N)Wo(r', r12, • , r',V)dr"2 .. i ',v, (29)a~

where Ei and %Pi (0 < i < oo) are the eigenvalues and normalized eigenfunctions of the

N-particle hamiltonian, and E = Ek - E.. The relations analogous to Eqs. (10) and

(12) for the non-interacting case are

nj r, ) ,W2 EL _ . *(r, r2,...rN)'Pk(r, r2,..., rN)dr2..drN (30)

and 00
2Eo _ v2

I (r~, w)vl (r, wJ.dr - 2  ka (1
k=f o k.

where

VL. -N / (rl, r2, • •rN)vl(rl) o (rl, r2,"" •, rN)drldr2 .... drN .  (32)"..fUI.

,4.
Eq. (31), like Eq. (12), is negative-definite for frequencies below the first resonance.

Therefore, exactly as shown in Sec. I for Xj, it follows that X can have no vanishing

eigenvalues in this range.

P

N a
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IV. CONCLUDING REMARKS

In their paper on density functional theory of linear response, Gross and Kohn 5 pre-

supposed that the physical density no(r) + nl(r,t) was "non-interacting VR" (VR-N),

that is, can be reproduced by a system of non-interacting particles in an external potential

v. (r) + vj (r, t). We have shown in this paper that this will be the case if no by itself is VR-

N and the frequency of vj is les, than the smallest resonance. However, if the frequency

is higher, our examples show that caution is in order. If our examples are representative,

then in general we expect that there will be ieoaed frequencies, 0, at which most density

changes are not VRLN. The exceptions are those special functions which are orthogonal to

the functions q(r, 0), corresponding to vanishing eigenvalues of X,.

We note, however, that in the special case of an infinite uniform non-interacting electron

gas the response function x (k, w) has no vanishing eigenvalues for any k or w, so that any

sufficiently regular n1 (r, w) is VRN at all frequencies.

The authors thank E.K.U. Gross for helpful discussions. Support by the National

Science Foundation through Grant No. DMR83-10117 and the Office of Naval Research

under Contract No. N00014-84-K-0548 is gratefully acknowledged.
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FIGURE CAPTIONS

Fig. 1. Eigenwalue of x* for a 30-dimensional mtrix. The dashed lines mark the

locations of the remonances at w = 8, 12, 24, 32, and 48.

Fig. 2. Eigenvaluu. of x. in a frequency range containing a sero.

Fig. 3. Mantd.of the first 10 Fourier amplitude, of an eigenfunction with eigen-

value tending to xeo, weighted so that (w/2)1/2EejsfI2 = 1. The dashed line is the

eigusu curve in the same frequenc rang. (vertical scale not shown).

Fig. 4. Normaliued eig~fnction for A(w) =1.2386x 10-5, w u12.6M8.
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